

APPLICATION OF ALGINATE BEAD ENCAPSULATED N₂-FIXING BACTERIA IS IMPROVING WHEAT YIELD UNDER DROUGHT STRESS

Maged M. Saad¹; Hanaa A. Abo-Koura^{2*}; Khaled M. Abd El-Latif² and Mona M. Aly²

¹Agriculture Genetic Engineering, Research. Institute Agriculture Research (ARC), Center, Giza, Egypt. ^{2*}Soils Water and Environment Research, Institute (SWERI), Agriculture Research Center (ARC), Giza, Egypt.

Abstract

Water scarcity is one of the most pressing and threating environmental issues facing the human population. Plant growth promoting bacteria (PGPB) are presented as safe and ecological complementary solution to the food security problem along with the traditional crop breeding and genetic engineering. Plant-associated microbial communities, such as, nitrogen-fixing bacteria, improve crop productivity and provide stress tolerances for different biotic and abiotic factors. In this study, we isolated and characterized fourteen Azotobacter spp from rhizosphere of wheat plants, among these isolates; we identified the most effective plant growth promoting isolate as Azotobacter chroococcum using Bio-log identification system. The encapsulated of the A. chroococcum with sodium alginate shows beds integrity intact bacterial cells using the scanning electron microscopy. Encapsulated A. chroococcum was tested for growth promotion of wheat under different water regime at field experiments, the results indicated that encapsulated A. chroococcum was effective in lowering the harmful effect of water deficit on several wheat agronomical criteria. Wheat treated with encapsulated or liquid culture significantly diminish the reductions in relative water content recorded 66.37% and 59.23%, respectively under water defiant 80% from actual evapotranspiration plus 100% and 75% mineral nitrogen. Moreover, wheat inoculated with A. chroococcum in two forms showed reduction in proline accumulations in shoots, as well as lowest antioxidant enzymes contents. The inoculation with A. chroococcum either encapsulated or liquid culture significantly enhanced wheat grain yield and yield components, as well as nitrogen (N), phosphorus (P), and potassium (K) contents in grains of wheat under water defiant 80% from actual evapotranspiration.

Key words : Encapsulation, Alginate, Scanning electron microscopy, wheat, water relations

Introduction

Water availability is the most limiting factor for rising production of agricultural and an important factor for wheat production in Egypt as well as arid and semi-arid regions as they face shortage in water demands of agriculture. Efficient utilization of available water resources is crucial for a country facing severe water scarcity in Egypt, where water consumption in agriculture constitutes more than 85% of the total annual water resources. Sustainability of agricultural production depends on the conservation and appropriate management of scarce water resources especially in arid and semiarid areas, where irrigation is required for the production

*Author for correspondence : E-mail : Lana_allah333@yahoo.com

of food and cash crops. Drought controls crops productivity worldwide in the majority of agricultural fields and recent global climate change has made this situation more adverse (Al-Ghamdi, 2009), besides, it affect the morphological, physiological, biochemical and molecular processes in plants resulting in growth inhibition. The extent of these changes is dependent on the time, stage and severity of environmental stress (Cao *et al.*, 2011). Many biological micro, macro-molecules are affected with drought, such as nucleic acids (DNA, RNA, micro RNA), proteins, carbohydrates, lipids, hormones, ions, free radicals and mineral elements (Ingram and Bartles, 1996). As a result of drought stress, an increased production of reactive oxygen species (ROS) such as superoxide radicals, singlet oxygen, hydroxyl radicals and hydrogen peroxide (Agarwal *et al.*, 2005). Generation of ROS causes rapid cell damage (Imlay, 2003). A variety of strategies has been used to improve the drought tolerance of crops, including traditional selection methods and genetic engineering (Fleury, 2010).

Azotobacter is an aerobic, free living, non-symbiotic nitrogen fixing diazotroph (Wani, 1990). It can beneficial to plant by secrete the vitamins, amino acids, produce siderophores and auxins which are among the direct mechanisms of increasing root development and plant growth (Akbari *et al.*, 2007). Moreover, they produce thiamin, riboflavin, indole acetic acid and gibberellins (Kader, 2002). Beneficial effects of Azotobacter on growth various plants was reported and consider as Plant Growth Promoting Rhizobacteria (PGPR) (Nasaruddin, 2014).

Encapsulation has been studied as carriers of plant beneficial microorganisms to increase the efficacy and quality of bio inoculants and reduced the costs and environmental impact (Bashan and Gonzalez 1999; Amalraj et al., 2013). These encapsulated of bacteria, protecting them from adverse environmental conditions and allowing their gradual release when these polymers are degraded. In addition, encapsulated bacteria can be dry stored at room temperature for long periods of time (Bashan et al., 2002). Moreover, these formula with encapsulated bacteria have been suggested for seed treatment, it can be improved the environmental persistence of bead-immobilized microorganisms (John et al., 2011). However, the use of encapsulated bacteria has two main disadvantages; it requires additional seed treatment during sowing. This may be objected because of inadequate agricultural education or the conservative cultural traditions of some small-scale growers wary of new technologies. The use of micro-alginate beads could resolve these difficulties by employing seeds coated with "bead powder" at the handling facility, which are sold to the grower as "improved seeds" (Bashan et al., 2014). However, seed coating with microencapsulated bacteria requires additional adhesive substances such as lecithin and Resitol (Bashan et al., 2002) and, being no easy task, it has, until now, only been conducted on an experimental scale (Bashan et al., 2014).

Wheat (*Triticum aestivum* L.) is considered the thread cereal crops, it is the dominant crop in temperate countries being used for human food and animals feed. Limiting crop yields already today in more than 70% of arable lands, and the drought limitations further gain in importance in the near future as agricultural activities expand to less fertile areas to satisfy growing demands for food (Flexas, 2013). The urgent need to increase global

wheat production requires greater progress in improving wheat tolerance to biotic and a biotic stresses, whose production reached more than 730 million in 2017/2018 (FAO, 2017). Wheat is one of the most important crops in Egypt. However, national production remains low and does not meet the needs of the growing population Shrief and Abd El-Mohsen (2015). The most limiting factor for wheat productivity is water deficit, which affects yield depending on its intensity and wheat phenological stage (Okuyama et al., 2004; Araus et al., 2008). Thus, the aims of this study to provide a multi-function approaches using N₂ fixing bacteria as plant growth promoting bacteria to help plant growth under drought stress. We selected the most efficient free nitrogen fixing bacteria isolated from the rhizosphere and apply these bacteria as encapsulated inoculum to the wheat growing under drought.

Materials and Methods

Samples collection, isolation, and identification of *Azotobacter*

Soil samples were collected from the soil rhizosphere for different wheat plants collected from Agricultural Research Center (ARC) (30°01'13.6"N 31°12'30.4"E: 30°01'11.3"N 31°12'20.5"E, Giza Govern., Egypt. Fourteen isolates of Azotobacter spp isolated by plating method (Brown et al., 1962). These bacteria were grown on selective free nitrogen Ashby's medium (Abd El-Malak and Ishac. 1968) and incubated at 28±2°C for 7 days. Isolates of Azotobacter morphological characteristic e.g. flat, slimy, paste-like colonies with a diameter of 5-10 mm were purified by subsequent streaking on new plate. Morphological characteristics of all isolates such as cell shape, color, consistency and biochemical reaction of isolates were recorded as described in Bergey's Manual of Systemic Bacteriology (Krieg et al., 1994). Motility of isolates was screened according to Rhodes (1958). Gram staining were determined after 2-5 days of incubation at $28 \pm 2^{\circ}C$ according to (Hegazi and Neimela, 1976). Catalase test was estimated according to (Schaad, 1992). HCN production was examined as described by (Bakker and Schippers (1987). Acetylene reduction assay was determined according to (Cappuccino and Sherman, 2002). The extracellular exopolysaccharide production (EPS) was determined according to (Damery and Alexander 1969). The identification of the selected isolate was done according to Bergey's Manual of Determinative Bacteriology (Holt et al., 1994) then we conformed this identified through (Biolog GN2 Microplate Biolog, 2000) in the VACSERA Cairo, Egypt using gram negative and positive systems in Microlog database.

Preparation and verification of bacterial encapsulation

Bacteria was grown in nutrient broth medium Difco Manual (1985) for 48 hours at 28°C to reach the maximum growth (10⁷cfu/ ml), encapsulation was done using sterile solution of sodium alginate (ALGOGGL, Degussa, France) according to Ivanova *et al.*, (2005), the air cooled sodium alginate were mixed with bacterial inoculum to prepare the beads of alginate, and kept it in saline solution. The Survival of encapsulated beads inoculants was tested as described by (Abo-Koura and Maie 2016). Scanning electron microscopy was used to study the beads formation and *Azotobacter* morphology using the (SEM, QUANTA FEG 250) at National research center, Cairo, Egypt according to the manufacture protocols.

Preparation bacterial inoculums

Bacteria was grown in nutrient broth medium Difco Manual (1985) for 48 hours at 28°C to reach the maximum growth (10^7 cfu/ml). Two types of *Azotobacter* inoculums were used, either encapsulated or liquid form, seeds were mixed with encapsulated bacteria as described by (Bashan *et al.*, 2002), while other forum of bacteria culture were carried on (1:1) vermiculite: beat moss using Arabic gum as adhesive agent to form slurry. The slurry was then mixed with the seed until it was evenly coated. The coated seeds were lifted to dry in the shed for 60 minutes and planted in soil.

Experimental design, field practices and data collection

Field experiment was conducted at the Giza Agricultural Research Station experimental farm (latitude of 29°26'N and longitude of 31°13'E) during winter season (2016/2017). Wheat (Triticum aestivum L.) grains Giza 168 cultivar were obtained from field Crops Research Inst., Agricultural Research Center, Giza, Egypt. Bulk density, physical and chemical properties of the soil at the experimental site were determined according to Klute (1986) and Page et al., (1982), while particle size according to (Piper, 1950) and chemical properties according to Ryan et al., 1996). The experimental design was split plot with four replicates, the plot area was 6×7 m each. The treatments were, main plots (irrigation regimes based on crop evapotranspiration): 100%, 80% and 60% ET crop. Sub-plots (N-fertilizer rates): 100%, 75%, 75+ encapsulated beads of Azotbacter and 75+ liquid of Azotobacter. From each treatment, six plants were used to estimate growth criteria. Nitrogen (N), phosphors (P), potassium (K) mineral fertilization were applied as recommended dose for Egyptian Ministry of Agriculture.g The control plots received 100% from recommended dose from NPK, while the other treatment received 75% mineral nitrogen and full dose from PK.

Biochemical assays

Proline content was estimated in shoots of wheat after 35 days as described by (Bates *et al.*, 1973). For Antioxidant enzymes assays, Catalase (CAT) enzyme was determined according to the method of Aebi (1983). Ascorbate Peroxidase (APX) was determined according to Nakano and Asada (1981) and Super Oxide Dismutase (SOD) was determined according to Donahue *et al.*, (1997).

Relative water content (R.W.C%)

For the determination of RWC % after 35 days after sowing, fresh mass (FM) was estimated for shoots wheat and dry mass (DM). Turgid weight (TM) was estimated after holding shoots in 100% humidity conditions in the dark at 4°C for 4 h. Then, the samples were dried at 70°C to estimate the dry mass (DM). The RWC % of shoots was determined using the equation as described by Sharp *et al.*, (1990) as follows:

 $RWC = (FM-DM / TM-DM) \times 100$

Cell membrane stability index (C.M.S %)

Leaf membrane stability was determined after 35 days, according to protocol described by Sairam (1994). 0.2g was taken from leaf and put it in test tubes containing 10 ml of double distilled water in two sets. Test tubes in one set were kept at 40°C water bath for 30 min then we measured (C_1) using a conductivity bridge. Test tubes in the other site incubated at 100°C in the boiling water bath for 15 min, then we measured above (C_2). MSI was calculated using the formulae

 $MSI = (1-C1/C2) \times 100$: Where:- C1= reading at 40°C and C2=reading at 100°C

Yield component

Plants were collected from a Random chosen $1m^2$ using wooden frame. Samples of straw and grains were dried at 70°C up to steady dry weight, and then grounded and digested according to the method recorded by (Page *et al.*, 1982).The digests were used for measurement of NPK. Nitrogen was determined using micro Kjeldahl, while phosphorous and Potassium was determined to the procedure outlined by (Allen, *et al.*, 1974).

Harvest index was calculated are described by the following Equation as described by (Kozak and M¹dry, 2006) as follow: HI= grain yield / biomass yield

Water relations:

CROPWAT model was used to calculate reference evapotranspiration with Penman Monteith.

1. Crop evapotranspiration (ETc) :- (Allen 1998)

 $ETc = ET0 \times Kc$

Where:-

ETc = Crop evapotranspiration.

ET0 = Reference evapotranspiration.

Kc = Crop coefficient (from FAO 56)

2. Applied irrigation water (AIW)

A furrow surface irrigation method was used to conduct this treatment. Applied irrigation water was measured by a flow meter installed in the main pumping unit of irrigation water. The depth of applied irrigation water (AIW) to the experimental plots was calculated according to the following equation:

AIW= ETc / Ea

Where:

ETc = water consumptive use (CU, mm/d), or actual evapotranspiration (ETc).

Ea = application efficiency (fraction) = 0.6 for surface system at the site.

A submerged flow orifice with fixed dimensions was used to measure the amount of water to be applied to the experimental plots. The discharge of the orifice is calculated according to the following equation (Michael, 1978).

$$Q = CA \sqrt{2gh}$$

where:

Q = discharge through orifice, (cm³/sec)

C = coefficient of discharge (0.6 up to 0.8).

A = cross-sectional area of the orifice (cm^2)

g = acceleration of gravity (981 cm/sec).

h = head of water causing discharge through the orifice (cm).

3. Water utilization efficiency (WUtE)

Water utilization efficiency (WUtE) values were calculated according to **Jensen (1983)** as follow:

WUtE (kg m⁻³) = Grain yield (kg fed⁻¹)/Applied irrigation water (m³ fed⁻¹).

Applied irrigation water was recorded by a flow meter installed in the main unit of irrigation water.

Statistical analyses

The study design was split plot. Least significant difference test was used to compare means using the statistical analysis software; CoStat (CoHort Software, U.S.A) version 6.4. The values of probability p<0.05 were considered statistically significant. Based on the least significant difference test.

Results

Physical and chemical properties of experimental soil

The experimental site were characterize with clay loam soil with 34% clay and 36% silt and 28% sand The total orange mater with approximately 1% with normal, salinity of soil was 2.0 dSm⁻¹ with neutral/ slit alkane pH, which is average of this region (Table 1).

Water capacity of the exponential filed

In order to recorded the water constants of field sites different measurement was done in different soil depth as inducted in the (Table 2).

Characterization of Azotobacter isolates

Fourteen isolates of *Azotobacter* bacterial were isolated from rhizosphere of wheat plants.

Morphological characters of Azotobacter isolates obtained are presented in Table 3. Azotobacter isolates have variation in cell shapes on plates after 7 days from growth of incubation. Majority of Azot 1, 6, 5, 10, 13, and Azot 14 have large rods of shape, while Azot 2, 7, 8, 11 and Azot 12 have coccid shapes. Azot 3 has medium rod shape while Azot 9 has small rod shape. Most of isolates are producing insoluble pigment creamy and slime changes to brown like Azot 1,2,7,8,9,10,13 and Azot 14 while Azot 4, 5, 6 and Azot 11 are not capable to produce the pigments in the plates after 7 days from growth. Consistency also differed between the isolates of Azotobacter spp, ranged from mucoid, viscid and milky in plates. All isolates are negative to gram reaction stain, motility and positive to catalase test. Also all of isolates have the ability to synthesis the hydrogen cyanide on Kings

Table 1: Physical and chemical properties of the soil at the experimental site.

Seasons	* Particle size distribution			Textural	**Chemical properties					
	Clay	Silt	Sand	class	O.M.(%)	EC dS/m	Available (ppm)			pН
		%					Ν	Р	К	
2016/17	34.9	36.8	28.3	Clay loam	1.34	1.95	31.6	16.3	215.8	7.9

Depth (cm)	Field capacity (%, w/w)	Wilting point (%, w/w)	Available water (%, w/w)	Bulk density (g cm ⁻³)
00-15	42.9	18.3	24.6	1.26
15-30	37.9	16.8	21.1	1.30
30-45	32.2	15.9	16.3	1.35
45-60	26.8	16.8	10.0	1.44
Mean	34.95	16.95	18.0	1.34

 Table 2: Water constants and bulk density values of the soil at the experimental site.

B agar medium amended with glycine.

Nitrgenase activities and exopolysaccharides production from *Azotobacter* isolates

All of Azotobacter isolates screened for their N₂fixing ability, producing, exopolysaccharide production (EPS) (Fig.1). Azot 7 recorded highest amounts of nitrogenase activity compared to other isolates followed by Azot 4 and Azot 2 being 47.23, 45.17 and 41.03 (µ mole C2H4 / ml/h) respectively. While Azot 12 recorded lowest nitrogenase activity. Fourteen isolates distrusted to produce exopolysaccharide. Dry weight EPS weighing results indicate that the Azotobacter isolate 7 resulted in a higher dry weight compared to other isolates of azotobacter. Azot 7 recorded higher producing EPS (7.9 g/L) followed by Azot 2, Azot 4 recorded (7.6 and 7.5 g/ L). EPS weighing results ranged between (2.8 to 7.9 g/ L). Azot 11 recorded lower producing EPS compared to other isolates. So the active selective isolate for nitrogenase activity and producing exopolysaccharides has been identified to Azotobacter chroococcum. Therefore, it was used to encapsulated and later as inoculants for wheat plant.

Evaluation of encapsulated *Azotobacter chroococcum* by Scanning Electron Microscope (SEM)

Using the SEM to visualize the encapsulated bacteria, (Fig.2), single and double coccid of *Azotobacter* of sodium alginate was obtained through SEM image has a size of range about 236.0 nm to 680.3 and no sign of contamination of other bacteria were observed..

Antioxidant Enzymes

The results showed in Fig. 3, significantly increased antioxidant enzymes in leaves of wheat plants under water deficit, while inoculation with A. chroococcum led to reduce the activity of antioxidant enzymes in shoots of wheat. CAT enzyme recorded 9.0 and 9.0 (µmol H₂O₂ mg⁻¹ protein min⁻¹), respectively with inoculation either encapsulated or liquid culture under 80% from ETC, while recorded 10.3 and 10.4 (μ mol H₂O₂ mg⁻¹ protein min⁻¹), respectively under 60 % from ETC. Also APX and SOD enzymes recorded lowest activity in shoots of wheat treated with encapsulated or liquid A. chroococcum under 80% from ETC compared with wheat untreated with bacteria, recorded 3.5 and 3.8 (μ mol ASA mg⁻¹ protein min⁻¹) for APX, respectively, while 9.2 and 9.9 (μ /100g FW), respectively for SOD. On the contrary, the highest enzyme activity obtained when wheat plants were treated with 100 % N nitrogen only under water deficit. It is interesting to observation that antioxidant enzymes decreased on the following order, 75%N+A. chrococcum encapsulated and 75% N+A. chrococcum liquid under 80 % and 60% from ETC as indicated in Fig. 3.

No of isolates	Cell shape	Color	Consistency	Gram staining	Motility	Catalase Test	HCN
Azot.1	Large rod	Brown	Mucoid, viscid	-	+	+	+
Azot.2	Coccid	Creamy white	Viscous	-	+	+	+
Azot. 3	rod	Dull white	Weak slimy	-	+	+	+
Azot. 4	rod	Clear white	Mucoid	-	+	+	+
Azot. 5	rod	white	Mucoid, viscid	-	+	+	+
Azot. 6	Large rod	Dull Brown	Dry	-	+	+	+
Azot. 7	Coccid	Dull Brown	Mucoid	-	+	+	+
Azot. 8	Coccid	Brownish black	Milky	-	+	+	+
Azot. 9	Small rod	Dull Brown	Slimy	-	+	+	+
Azot. 10	Large rod	Brownish black	Mucoid	-	+	+	+
Azot. 11	Cocci single	White	Gummy	-	+	+	+
Azot. 12	Cocci single	Clear translucent	Viscous	-	+	+	+
Azot. 13	Large rod	Brownish black	Viscous	-	+	+	+
Azot. 14	Large rod	Dull Brown	Milky	-	+	+	+

 Table 3: Morphological characteristics of Azotobacter spp isolates.

Fig. 1: Nitrogenase activity and exopolysaccharides production of *Azotobacter spp* isolates.

(A)

(B)

Fig. 2: SEM image of *Azotobacter* encapsulated beads with sodium alginate: A (encapsulated media with sodium alginate), B and C (encapsulated beads of alginate covering *A. chroococcum*).

Physiological characteristics

Physiological characteristics including R.W.C%, C.M.S% and proline content are presented in Table 4. Water defiant stress induced a massive decrease in R.W.C (%) and C.M.S (%) in shoots of wheat plants, In R.W.C recorded 55.93% and 55.87%, respectively with 100 %N and 75 N % under 80% from ETC, while the inoculation with A. chrococcum either in two forms significantly diminished these reductions being 66.37% and 59.23%, respectively in wheat treated with 75% N + A. chrococcum encapsulated and 75% N+A. chrococcum liquid under 80% from ETC, the increased in R.W.C were 18.6% with 75% N + A. chrococcum encapsulated and 6.0 % with 75% N+ A. chrococcum liquid under 80% from ETC compared to the treatment supplemented with 100 %N under 80% from ETC. On the other hand the R.W.C% under water defiant 60% from ETC were 49.23% and 44.00 %, respectively with 100 %N and 75 %N whereas the inoculation increased the R.W.C % with two forms of bacteria under 60% from ETC. Regarding to C.M.S % there are a significant variation for cell membrane stability, water stress induced reduction in C.M.S % of the wheat cultivar while under irrigation C.M.S% were higher than water defiant condition. Under 80% from ETC wheat treated with encapsulated bacteria recorded C.M.S 43.9% ,while with liquid culture were 42.9% compared to wheat treated with 100% and 75 % N only. On the other hand, 60 % from ETC the C.M.C% recorded 49.9% and 48.7%, respectively with wheat treated either encapsulated form or liquid culture.

Fig. 3: Antioxidant Enzymes Assays, (A,B and C) affected by either encapsulated bead of *A.chrococcum* or liquid under three levels of water.

Regarding to Proline, it was significantly increased in shoots of wheat under 80 and 60 % from ETC compared to wheat plants under 100% from ETC, while inoculation wheat with encapsulation beads of *A. chroococcum* and liquid culture induced reduction in proline accumulation under 80 and 60 % from ETC, recorded 5.07 and 4.81 (mg /g d. w), respectively under 80 from ETC, while recorded 6.90 and 6.05 (mg /g d. w), respectively under 60 % from ETC compared to un- inoculated wheat,

recorded 11.0 and 10.20 (mg /g d. w), respectively under 80 and 60 % from ETC plus 75 %N.

Yield components

In concern to yield components (Table 5) data obtained showed that A. chroococcum inoculant either encapsulated or liquid could markedly improve grains, straw yield and harvest index of wheat under water defiant. Maximum grain yield was obtained with encapsulated of A. chroococcum inoculant plus 75% N under 80 % from actual evapotranspiration recorded 3.60 Ton /fed followed by treatment obtained with liquid of A. chroococcum recorded 3.36 Ton/ fed. While 60 % from actual evapotranspiration maximum grain yield recorded 3.25 Ton /fed with encapsulated beads of A. chroococcum followed by treatment obtained with liquid of A. chroococcum recorded 3.15 Ton/ fed compared to treatment containing 100% N and 75% N only. The increased in grain yield was 28.57% with inoculation 75%N+ encapsulated of A. chroococcum, while the increased was 20.0% with 75%N+A. chrococcum liquid compared to wheat treated with 75%N only under 80% from ETC, while the increased were 41.30% and 36.95%, respectively with 75%N+ encapsulated of A. chroococcum and 75%N+A. chrococcum liquid compared with wheat treated by 75%N only under 60% from ETC. Similar pattern was also observed for straw yield and harvest index. Maximum straw yield obtained with encapsulated beads of A. chroococcum under 80% from ETC, recorded 4.14 Ton /fed compared to treatment supplemented with mineral nitrogen only either 100% N or 75% N were recorded 3.86 and 3.46 Ton/fed, respectively. On the other hand the maximum straw yield with 60% from ETC recorded 3.99 and 3.86 Ton/fed, respectively with encapsulated beads and liquid culture. The increased in straw yield was 19.65 % with encapsulated beads+ 75%N, while the increased was 18.20% with 75% N+A. chrococcum liquid compared to wheat treated with 75%N only under 80% from ETC. Whereas under 60% from ETC the increased were 33.00% and 28.66%, respectively with wheat treated with encapsulated of A. chroococcum + 75%N and A. chroococcum liquid + 75% N compared with wheat treated by 75%N only. The highest harvest index recorded with wheat treated with encapsulated A. chroococcum +75%N followed by wheat treated with A. chroococcum liquid + 75%N under 100% from ETC.

Macronutrients of wheat grains

All the treatments under 100% from ETC irrigation significantly enhanced nitrogen, phosphors, potassium content in grains of wheat plants (Table 6). On the

Table 4: Physiological characteristics affected by either encapsulated bead of A.chrococcum
or liquid under three levels of water.

IrrigationA	TreatmentsB	R.W.C	C. M.S	Proline
		(%)	(%)	(mg /gd. w)
100% from ETC	100%N	69.47	55.2	5.02
	75%N	65.77	58.0	4.79
	75%N+A.chrococcum encapsulated	69.70	49.3	5.05
	75%N+A.chrococcum liquid	63.50	48.4	5.02
80% From ETC	100%N	55.93	43.2	10.05
	75%N	55.87	39.9	11.00
	75%N+A.chrococcum encapsulated	66.37	43.9	5.07
	75%N+A.chrococcum liquid	59.53	42.9	4.81
60% from ETC	100%N	49.23	48.5	10.78
	75%N	44.00	45.5	10.20
	75%N+A.chrococcum encapsulated	50.23	49.9	6.90
	75%N+A.chrococcum liquid	56.57	48.7	6.05
	L.S.D at 0.05			
А		2.704	73.45	0.913
В		4.471	57.09	1.810
A×B		7.745	98.89	3.135

 Table 5: Grain, straw and harvest index of wheat affected by either encapsulated bead of *A.chrococcum* or liquid under three levels of water.

IrrigationA	TreatmentsB	Grain yield Ton/fed.	Straw yield Ton/fed.	Harvest Index %
100% from ETC	100% N	3.87	4.45	46.51
	75%N	3.44	4.13	45.44
	75%N+A.chrococcum encapsulated	3.85	4.31	47.18
	75%N+A.chrococcum liquid	3.53	4.00	46.87
80% from ETC	100%N	3.03	3.86	43.97
	75%N	2.80	3.46	44.72
	75%N+A.chrococcum encapsulated	3.60	4.14	46.51
	75%N+A.chrococcum liquid	3.36	4.09	45.10
60% from ETC	100%N	2.70	3.26	45.30
	75%N	2.30	3.00	43.39
	75%N+A.chrococcum encapsulated	3.25	3.99	44.89
	75%N+A.chrococcum liquid	3.15	3.86	44.93
	L.S.D at 0.05			
А		5.531	7.2	
В		6.2	7.2	
A×B		7.2	1.24	

chrococcum encapsulated while, it record 0.88% with wheat treated with 75% N+A. chrococcum liquid. Regarding to P%, inoculation significantly improvement the phosphors in grains, recorded 0.88% in grains of wheat treated with 75%N+A. chrococcum encapsulated under 80% from ETC and giving 0.82% with 75%N+A. chrococcum liquid compared to wheat untreated with bacteria, also under 60% from ETC phosphors in grains recorded 0.59% and 0.50%, respectively with 75%N +A.chrococcum encapsulated and 75% N+A. chrococcum liquid culture compared to wheat untreated with bacteria, recorded 0.48% and 0.53% with 100%N and 75%N, respectively. Likewise inoculation with of A. chroococcum either encapsulated or liquid culture increased the K% in grains of wheat under drought stress compared to wheat treated with 75% N only. Highest K% recorded with wheat treated with 75% Ν +A.chrococcum encapsulated under 100% from ETC compared with other treatments. Generally, application of bacteria either encapsulated or liquid culture enhancement the mineral concentration in wheat grains.

Soil water relations

Applied irrigation water (AIW)

Amount of applied irrigation water throughout the growing season for different treatments

contrary, wheat treated with minerals content only, recorded decreased in NPK % in grain under 80% and 60% from ETC. Maximum N in grains of wheat recorded with wheat treated encapsulated of *A. chroococcum* with 75% N recorded 1.39 N% in grains, while wheat treated with liquid *A. chroococcum*, recorded 1.35 N% under 80% from ETC. Under 60% from ETC the nitrogen in grain recorded 0.98% in wheat treated with 75%N+*A*.

were presented in Table 7. Results showed that the amounts of applied irrigation water were recorded under 100% ETo as compared with 80 and 60% ETo treatments through the growing season. The total amount of applied irrigation water for wheat were 2391, 1924 and 1836 m3 fed⁻¹ for the 100, 80 and 60% ETo, respectively For the relation between of applied irrigation water (100, 80%)

Irrigation	Treatments	N%	P%	K%
100% from ET_0	100%N	1.43	0.89	0.52
	75%N	1.33	0.83	0.51
	75%N+A.chrococcum encapsulated	1.54	0.99	0.55
	75%N+A.chrococcum liquid	1.52	0.87	0.54
80% From ET_0	100%N	1.02	0.65	0.43
	75%N	0.90	0.61	0.41
	75%N+A.chrococcum encapsulated	1.39	0.88	0.54
	75%N+A.chrococcum liquid	1.35	0.98	0.51
60% from ET_0	100%N	0.80	0.48	0.33
	75%N	0.76	0.53	0.31
	75%N+A.chrococcum encapsulated	0.98	0.59	0.42
	75%N+A.chrococcum liquid	0.88	0.50	0.40
	L.S.D at 0.05	1	•	
А		0.4241	0.0358	0.0035
В		0.5269	0.2712	0.0313
A×B		0.9126	0.4698	0.0542

Table 6: Macronutrients of wheat affected by either encapsulated bead of *A.chrococcum* or liquid under three levels of water.

 Table 7: Applied water and water utilization efficiency of wheat affected by either encapsulated bead of *A.chrococcum* or liquid under three levels of water.

IrrigationA	TreatmentsB	AIW	Yield kg/fed.	WUtE
100% from ETC	100%N	2400	3.87	1.61
	75%N	2395	3.44	1.44
	75%N+A.chrococcum encapsulated	2375	3.85	1.62
	75%N+A.chrococcum liquid	2392	3.53	1.48
	Mean	2391	3.67	1.53
80% from ETC	100%N	1935	3.03	1.56
	75%N	1931	2.80	1.45
	75%N+A.chrococcum encapsulated	1914	3.60	1.88
	75%N+A.chrococcum liquid	1915	3.36	1.75
	Mean	1924	3.19	1.65
60% from ETC	100%N	1814	2.70	1.48
	75%N	1812	2.30	1.26
	75%N+A.chrococcum encapsulated	1809	3.25	1.79
	75%N+A.chrococcum liquid	1910	3.15	1.65
	Mean	1836	2.85	1.72

and 60% ETC) and four fertilizer treatments (100% N, 75%N, + encapsulated beads of *A.chrococcum* + 75%N and 75%N+*A.chrococcum* liquid) results revealed that fertilizer of 100% N treatment resulted in average higher amount of AIW were (2400) of 100% ETC (1935 m3/ fed.) and (1814 m3/fed.) comparing with 80 and 60% ETC treatments through the growing season. While the lowest ones amount of IWA were recorded by fertilizer treatment 75% N + encapsulated beads of *A.chrococcum* recorded (2375, 1914 and 1809 m³/fed) respectively.

Water utilization efficiency (WUtE, kg m⁻³)

Efficiency of water utilization is an important limiting factor to crop production. Water utilization efficiency (WUtE) values of wheat yield affected by the tested variables during 2016 /2017 growing season are presented in (Table 7). Results show that the average values of water utilization efficiency (WUtE) were affected by irrigation and fertilizer treatments. Results indicated that the average water utilization efficiency (WUtE) as affected by irrigation treatments, was 1.53, 1.65 and 1.72 kg m⁻³ under (I_1) , (I_2) , and (I_2) irrigation treatments, respectively. The interaction shows that highest values of WUtE were 1.88, 1.79 and 1.65 kg grain m⁻³ water applied respectively; obtained from $(I_2, I_2 \text{ and } I_1)$ with 75%N+ A.chrococcum encapsulated treatment. Whereas, the lower values of WUtE recorded 1.44kg m⁻³ water applied, was obtained by (I_1) with 75%N

Discussion

Drought is the major reasons for damages and losses in Agriculture, different effort are conducted to reduce or minimize the effect of drought in agriculture, one of the initiatives is using the nitrogen fixing bacteria to decrease the water using by the plant as well as to decrease the negative environmental impact from using chemical fertilizers. In this study

a total of fourteen *Azotobacter* isolates were isolated from the rhizosphere of wheat plants. All isolates were characterization as *Azotobacter* spp. and studied to the morphologically & biochemically tested according to the Burges manual. All of *Azotobacter* isolates were motility, catalase positive and synthesis the hydrogen cyanide, these results are harmony with Abdel-Hamid *et al.*, (2010) Mazinani *et al* (2012). Aquilanti *et al.*, (2004) found that the difference in cell shape, colony size may be because of various factors like presence of confused, shapeless masses-symbolisms, may also be indorsed to the structure of the medium. Azotobacter is a free–living N_2 – fixer diazotroph, the fixation of N_2 depends on the activation of nitrogenase activity, which may differ from strain to strain (Sandeep *et al* 2015); Stella and Suhaimi (2010) also found that three species of Azotobacter, A. chroococcum, A.vinelandii and A. beijerinckii, showed high growth, nitrogen fixation and in vitro production of phyto-hormone.

Different bacterial metabolites and extracellular polymeric substance (EPS) have been found to have an effect impact in the plant health (Seifan et al., 2016). Higher EPS producing help the plants to assume a higher volume of water and enhanced the nutrients from rhizosphere soil, causing in a better growth of plants, and also, this was useful to stabilize the damaging effects of drought stress (Sandhya et al., 2011). EPS producing the cells of Azotobacter, which leads to an increase in aggregates stability size destruction as indirect additional effect, which improves the plant growth under drought stress (Alami et al., 2000). Husam and Shatha (2013) studied the exopolysaccharides and found variation in exopolysaccharide polymer due to differed between molecular weight between the isolates. Encapsulated technique with sodium alginate positively immobilized with the above-mentioned polymer Damasceno et al., (2014); Krishnamoorthy et al., (2016) generally sodium alginate as safe which has a high oxygen block when dry without disturbing bacterial bioactivity. Sodium alginate had no effect the survival of bacteria even for several days from immobilized as well as is an ecological hydrophilic. Results obtained from this study showed that immobilization of bacteria in sodium alginate beads a favorable style for improve the cell protection and salvage. This ticking for immobilization provides a new protocol in future application of sustainable bio self-healing material. Also the encapsulation of Azotobacter in sodium alginate beads is a hopeful method to improve the cell protection and recovery, and supply a new technique to address the limitations in future application of ecological bio selfhealing material. Under drought stress condition nitrogen fixing bacteria inoculation, caused a decreased in antioxidant enzymes 'activities there are a significant interaction between antioxidant enzyme activity and drought stress, wheat inoculation with PGPRs led to reduce the activity of enzymes (Han and Lee 2005). As a result of drought, SOD,CAT and APX activates significantly increased in leaves of wheat, as a result of ROS formation and due to closed of the stomata and following decrease in CO₂ concentration in the leaf mesophylls tissue, then NADPH is accumulation; and the oxygen doings an alternative acceptor of electrons, then the superoxide radicals are formed (Cadenas, 1989) Also, Lee *et al.*, (2009) found that there are a positive a correlation between all of antioxidants enzymes in the case of water deficit stress conditions. *Azotobacter* inoculation led to changes in enzymes activity also be a result of change of synthesis and accumulation of less activity of the enzymes (Chaparzadeh *et al.*, 2004).

A reduction in relative water content is a typical plant reply to osmotic stress (Fahad et al., 2015). RWC increased for Azotobacter inoculated treatments under stress condition. This is a signal of enhanced water uptake due to the bacterial inoculation under drought stress conditions. Under drought stress inoculation of PGPR could increase plant water status and thus increased biomass accumulation (Nadeem et al., 2007). Drought stress made a loss in cell membrane stability due to a major reason for reduce the growth of various plant species, this reduction might be to the enhanced production of damaging ROS molecules. Azotbacter inoculation significantly reduced the amount of leakage from plant tissue (Samira et al., 2014). Many authors found that in crop varieties of wheat under drought stress proline accumulation were significantly increased in wheat plant free proline might be involved in membrane stabilization during water stress (Kocheva and Georgiev, 2003), or it might be a reserve of readily mobilize N₂ available upon relief of stress. PGPRs inoculation reduced proline content in the leaves of wheat plants under drought stress. May be Azotobacter inoculation could compensate drought effects plus to enhanced water status in wheat plant (Samira et al., 2014). Here also 60% irrigation from actual evapotranspiration without Azotobacter inoculation has lowest grain yield these result are harmony with Ehsan et al., (2017) cleared that under drought stress and PGPR plus nitrogen application gave maximum grain and straw yield on the other hand 60% irrigation without PGPR treatment gave lowest grain yield. Further, Moser et al., (2006), found that adverse effect of drought stress on the grain yield. Water deficit induced reducing in the gaining of nutrients by the root and their transport to shoots, as well as induced reduction in the inorganic nutrients as a result from interfering in nutrient uptake and the unloading mechanism. P and K was disadvantaged (Garg, 2003; McWilliams, 2003). Under water stress PGPRs have been reported to improvement to root hair propagation and increase root branching, and uptake of minerals and water (Spaepen et al., 2007). On the other hand (Yang and Zhang, 2006) cleared that applied of N fertilizer application under drought stress conditions improved remobilization and enhanced grainfilling rate. Generally, encapsulated, cells of microorganisms absolutely shows their leads over usually used free cell inoculation like N fixation (Bashan et al., 2002; Fenice et al., 2000). Soil water content at field capacity (FC) and wilting point (WP) are important for irrigation planning, assessing plant water requirement and assessing soil rightness for diverse land uses (Mbah, 2012). The increase in irrigation water applied under 100% ETo may be attributed to the increase in direct evaporation. Therefore, the seasonal irrigation water applied is higher under 100% ETC followed by 80% and 60% ETC for wheat during the growth season. The present results are in harmony with those obtained by the results of (Morsy et al., 2018). Regarding to results in irrigation frequency of irrigation and interval of irrigation are closely related and are often interchangeable (Majumdar, 2002 and Yavuz et al., 2010). Results indicated that applied irrigation water and water utilization efficiency were in harmony with those obtained by Abd El-Hady and Ebtisam, (2016) and Ewis et al., (2016). Morsy and Abd El-Latif (2012) found that increasing water applied for onion yield gave lower water productivity for all varieties. Under the conditions of the present experiment and to conserve the limited irrigation water resources, as an important national issue, it is advisable to 80% from ETC with fertilizer 75%N+A.chrococcum encapsulated in order to obtain reasonable water productivity.

Concerning to the results *Azotobacter* is able to alleviate drought stress on growth of wheat plant through colonization in the rhizosphere of plant, this is probably may be to producing EPS and this EPS might be deliver a microenvironment that grips water and dry out more slowly, and protecting the bacteria from drying (Sandhya *et al.*, 2009). This will open the horizons for further illustration of the genetic and metabolic capacity on those strains for that a genome sequence will be conducted as a the next step. As well as the capsulation will be applied to different bacterial strains as safe effecting way for inoculated bacteria.

Conclusions

The present study prospers to isolate nitrogen fixing bacteria and studied the morphological and biochemical characterization. The best active isolate for nitrogenase activity and exopolysaccharides production was selected to identify by Bio log system techniques and encapsulated it, these capsule beads proved a promising technique for protect the bacteria from drought stress. This technique improved the growth, Physiological characteristics under drought stress. As well as enhancement the oxidative enzymes besides that encapsulated beads of bacteria succeeded to increase the yield components with 80 and 60 % from actual evapotranspiration and enhancement the applied irrigation water and water utilization efficiency under drought stress. Encapsulate in alginate is presented as great carried for of inoculated plant growth promoting bacteria on the filed application.

References

Abd El-Hady, M. and E.I. Eldardiry (2016). Maximize Crop Water Productivity of Garlic by Modified Fertilizer Management under Drip Irrigation. *International Journal of Chem.Tech. Research*, **9(5)**: 144-150.

- Abdel-Malak, Y. and Y.Z. Ishac (1968). Evaluation methods used in counting Azotobacter. J. Appl. Bact., 31: 269-275.
- Abdel-Hamid, S.M., A.F. Elbaz, A. A. Ragab, H.A. Hamza1 and K. A. El Halafawy (2010). Identification and characterization of *Azotobacter chroococcum* isolated from some Egyptian soils. J. of Agricultural Chemistry and Biotechnology, 1(2): 93-104.
- Abo-Koura, Hanaa A., and M.A.Maie Mohsen (2016). Reducing effect of soil salinity through using some strains of Nitrogen fixer's bacteria and compost on sweet basil plant. *International Journal of PharmTech Research.*, 19(4): 187-214.
- Aebi, H.E. (1983). Catalase. In "Method of Enzymatic analysis", VCH, Weinheim, Germany-Deerfield, FL, 3: 273-286.
- Agarwal, S., R.K. Sairam, GC. Srivastava and R.C. Meena (2005). Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. *Biol. Plant*, **49**: 541-50.
- Akbari, G.A., S.M. Arab, H.A. Alikhani, I. Allahdadi and M.H. Arzanesh (2007). Isolation and selection of indigenous *Azospirillum* spp. and the IAA of superior strains effects on wheat roots. *World J. Agric. Sci.*, **3(4):** 523-529.
- Alami, Y., W. Achouak, C. Marol and T. Heulin (2000). Rhizosphere soil aggregation and plant growth promotion of sunflowers by exopolysaccharide producing *Rhizobium sp.* strain isolated from sunflower roots. *Appl. Environ. Microbiol.*, **66**: 3393-3398.
- Allen, S.E., H.M. Grimshaw, J.A. Parkinson and C. Quarmby (1974). Chemical analysis of ecological materials. Oxford: Blackwell Scientific.
- Allen, G.R., L.S. Pereira, D. Raes and M. Smith (1998). Crop evapotranspiration, guidelines for competing crop water requirements. FAO. Irrigation and drainages paper 56. Rome, Italy.
- Al-Ghamdi, A.A. (2009). Evalution of oxidative stress tolerance in two wheat (*Triticum aestivum*) cultivars in response to drought. *International journal of Agriculture and Biology*, **11**: 7-12.
- Amalraj, E.D.L., B. Venkateswarlu, D. Suseelendra, G. Praveen Kumar, S. Mir Hassan Ahmed, T. Meenakshi and *et al.* (2013). Effect of Polymeric Additives, Adjuvants, Surfactants on Survival, Stability and Plant Growth Promoting Ability of Liquid Bio inoculants. *J. Plant Physiol. Pathol.*, 1: 1±5.
- Aquilanti, L., F. Favilli and F. Clementi (2004). Comparison of different strategies for isolation and preliminary identification of Azotobacter from soil samples. *Soil Biol. Biochem.*, **36**: 1475-1483.
- Araus, J.L., G.A. Slafer, C. Roya and M.D. Serret (2008). Breeding for yield potential and stress adaptation in cereals. *Critical Reviews in Plant Science*, 27(6): 377-412.
- Bakker, A.W. and B. Schippers (1987). Microbial cyanide production in the rhizosphere in relation to potato yield reduction and *Pseudomonas* spp. *Mediated plant growth stimulation. Soil Biol. Biochem.*, **19**: 451-457.
- Bashan, Y., J.P. Hernandez, L.A. Leyva and M. Bacilio (2002). Alginate micro beads as inoculant carriers for plant growthpromoting bacteria. *Biol. Fertil. Soils*, **35**: 359±368.

- Bashan, Y. and L.E. Gonzalez (1999). Long-term survival of the plant-growth-promoting bacteria Azospirillum *brasilense* and *Pseudomonas fluorescens* in dry alginate inoculant. *Appl. Microbiol. Biotechnol.*, **51:** 262±266.
- Bashan, Y., L.E. de Bashan, S.R. Prabhu and J.P. Hernandez (2014). Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives. *Plant Soil*, **378**: 1±33.
- Bates, I.S., R.P. Waldrem and I.D. Tear (1973). Rapid determination of free proline for water stress studies. *Plant Soil*, **39**: 205-207.
- Brown, M.E., S.K. Burlingham and R.M. Jackson (1962). Studies on Azotobacter species in soil. I. Comparison of media and techniques for counting Azotobacter in soil. *Plant and Soil*, **17**(4): 309-319.
- Cadenase (1989). Biochemistry of oxygen toxicity. Annual Review of Biochemistry, **58**: 79-110.
- Cao, H.X., C.X. Sun, H.B. Shao and L. El, X.T. (2011). Effects of low temperature and drought on the physiological and growth changes in oil palm seedlings. *African Journal of Biotechnology*, **10**: 2630-2637.
- Cappuccino, J.G and N. Sherman (2002). Microbiology: a laboratory manual (8th edition,) Pearson. ISBN-13:978-0805325782.
- Chaparzadeh, N., M.L. Amico, R.K. Nejad, R. Izzo and F.N. Izzo (2004). Antioxidative responses of Calendula officinal is under salinity conditions. *Plant Physiol. Biochem.*, 42: 695-701.
- Damasceno, R., I. Roggia, C. Pereira and E. Saccol de SaÂ (2014). Rhizobia survival in seeds coated with polyvinyl alcohol (PVA) electrospun nanofibres. *Can. J. Microbiol.*, **59:** 716-719.
- Damery, J.T and M. Alexander. (1969). Physiological differences between effective and ineffective strains of Rhizobium. *Soil. Sci.*,**103**: 209-215.
- Difco Manual (1985). Dehydrated culture media and reagents for microbiology, Laboratories incorporated Detroit, Michigan, 48232 USS, 621-624.
- Donahue, J.L., C.M. Okpodu, C.L. Cramer, E.A. Grabau and R.G. Alscher (1997). "Responses of antioxidants to paraquat in pea leaves". *Plant Physiol.*, **1131**(1): 249-57.
- Ehsan Rezaei, M.R.M., H.R. Shamsaee, M. Hamidi, B. Sepehri and F. Golzardi (2017). Effect of Cumulative Application of nitrogen and PGPR on the various traits of barley (*Hordeum vulgare* L.) under drought stress conditions. Journal of Experimental Biology and Agricultural Sciences, **5**(3).
- Ewis, M.M., K.M. Abd El-Latif and M.I. Badawi (2016). Response of maize (*Zea mays* L.) to moisture stress under different nitrogen fertilization levels. *J.Soil Sci. and Agric.* Eng., Mansoura Univ., **11:** 865-872.
- Fahad, S., S. Hussain, A. Matloob, F.A. Khan, A. Khaliq, S. and et al. (2015). Phytohormones and plan tresponsesto salinity stress: a review. *PlantGrowth Regul.*, **75**: 391-404.doi:10.1007/s10725-014-0013.
- Fao (2017). Food and Agricultural Organization of the United Nations. Cereal supply and demand brief. Capturated in 04/24/2017 from http://www.fao.org/worldfoodsituation/ csdb/en/
- Fenice, M., L. Selbman, F. Federici and N. Vassilev (2000). Application of encapsulated *Pencillium* variable P16 in

solubilization of rock phosphate. *Biores. Technol.*, **73:**157 162.

- Fleury, D., S. Jefferies, H. Kuchel and P. Langridge (2010). Genetic and genomic tools to improve drought tolerance in wheat. *Journal of Experimental Botany*, 61: 3211-3222.
- Flexas, J., U. Niinemets, A. Galle, M.M. Barbour, M. Centritto and *et al.* (2013). Diffusional conductances to Co as a target for increasing photosynthesis and photosynthetic water-use efficiency. *Photosynth. Res.*, **117**: 1–3.
- Garg, B.K. (2003). Nutrient uptake and management under drought: nutrient-moisture interaction, *Curr. Agric.*, **27**: 1–8.
- Han, H.S and K.D. Lee (2005). Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. J. Agri. Biolo. Sci., 1: 210-215.
- Hegazi, N.A and S. Niemela (1976). A note on the estimation of Azotobacter densities by filter technique. 1. Appl. Bacteriol., 41: 311-323.
- Holt, J.G, N.R. Kriegm, P.H.A. Sneathm, J.T. Staley and S.T. Williams (1994). Bergey's Manual of Determinative Bacteriology, 9th Ed., Williams and Williams, MD, Baltimore. USA., 190–274.
- Husam Sabah Auhim and S.S. Hassan (2013). Production and characterization of alginate from Azotobacter vinellandii A3. International Journal of Advances in Pharmacy, Biology and Chemistry, 2(3): 507-512.
- Imlay, J.A. (2003). Pathways of oxidative damage. Annu. Rev. Microbiol., **57:** 395-418.
- Ingram, J. and D. Bartels (1996). The molecular basis of dehydration tolerance in plants. Annual Review of plant physiology and plant Molecular Biology, 47: 337-403.
- Ivanova, E., E.Teunou and D. Poncelet (2005). Alginate based microcapsules as inoculants carriers for production of nitrogen biofertilizers, In: Proceedings of the Balkan Scientific Conference of Biology in Plovdiv (Bulgaria) from 19th till 21th of May, 90-108.
- Jensen, M.E. (1983). Design and operating of farm irrigation system. *Amer. Soc. Agric. Eng. Michigan*, USA, 827.
- John, R., R. Tyagi., S. Brar, R. Surampalli and D. Prevost (2011). Bio-encapsulation of microbial cells for targeted agricultural delivery. *Crit. Rev. Bioethanol.*, **31**: 211±226. https://doi.org/10.3109/07388551.2010.513327 PMID: 20879835.
- Kader M.A., M.H. Mian and M.S. Hoque (2002). Effect of Azotobacter Inoculant on Yield and Nitrogen Uptake by Wheat. *Journal Biology Science*, **2(4):** 25 -251.
- Kozak, M. and W. M¹dry. (2006). Note on yield component analysis. Cereal Research
- Klute, A. (1986). Methods of Soil Analysis.Part 1.2nd ed. ASA and SSSA.Madison, Wisconsin, USA
- Kocheva, K. and G. Georgiev (2003). Evaluation of the reaction of two contrasting barley (*Hordeum vulgare* L.) cultivars in response to osmotic stress with PEG 6000. *Belg. J. Plant Physio.*, (special issue), 290–294.
- Krieg, N.R., J.G. Holt, P.H.A. Sneath, J.T. Staley and S.T.Williams (1994). Bergey's Manual of Determinative Bacteriology (9th ed.), Williams & Wilkins, Baltimore, Md, USA
- Krishnamoorthy, V., G. Elumalai and S. Rajiv (2016). Environment

friendly synthesis of polyvinylpyrrolidone nanofibers and their potential use as seed coats. *New J. Chem.*, **40**: 3268.

- Lee, B.R., L.S. Li, W.J Jung, Y.L. Jin, J.C Avice, A. Ouray and T.H. Kim (2009). Water deficit-induced oxidative stress and the activation of antioxidant enzymes in white clover. *Bio. Plant*, **53**: 505-10.
- Majumdar, D.K. (2002). Irrigation water management, principles and practice. Prentice-Hall of India Privet Limited, New Delhi, India, 261-283.
- Mazinani, Z., M. Aminafshar, A. Asgharzadeh and M. Chamani (2012). Different Methods for Isolation and Preliminary Identification of Azotobacter. International Journal of Agricultural Science and Research, 3(1): 1-8.
- Mbah, C.N. (2012). Determining the Field Capacity, Wilting point and Available Water Capacity of some Southeast Nigerian Soils using Soil Saturation from Capillary Rise. *Nig. J. Biotech.*, **24**: 41-47
- McWilliams, D. (2003). Drought Strategies for Cotton, Cooperative Extension Service Circular 582, College of Agriculture and Home Economics, New Mexico State University, USA.
- Michael, Schudson (1978). Discovering the News. New York: Basic Books.
- Morsy, A.S.M., A. Awadalla and M.M. Sherif (2018). Effect of Irrigation, Foliar Spray with Nano-fertilizer (Lithovit) and N-levels on Productivity and Quality of Durum Wheat under Toshka Conditions. Assiut J. Agric. Sci., 49(3): 1-26.
- Morsy, M.G. and K.M. Abd El- Latif (2012). Evaluating the effect of irrigation number on growth, yield, storability and water productivity of some onion varieties. *Fayoum J. Agric. Res. & Dev.*, **26** (2): 45-59.
- Moser, S.B., B. Feil, S. Jampatong and P. Stamp (2006). Effect of pre-anthesis drought nitrogen fertilizer rate and variety on grain yield, yield components and harvest index of tropical maize. *Agricultural Water Management*, **81:** 41-58. DOI: http://dx.doi.org/10.1016/j.agwat.2005.04.005.
- Nadeem, S.M., Z.A. Zahir, M. Naveed and M. Arshad (2007). Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. *Canadian Journal of Microbiology*, 53: 1141-1149.
- Nakano, Y. and K. Asada (1981). Hydrogen peroxide is scavenged by acerbate-specific peroxidase in spinach chloroplasts, *Plant Cell Physiol.*, **22**: 867-880.
- Nasaruddin (2014). Efejtifitas inokulasi Azotobacter chroococcum dan Cendawan Mikoriza Arbuskular terhadap ketersediaan hara dan pertumbuhan tanaman kakao. Makalah Seminar Nasioanal KEMENRISTEK, Pebruari, Bandung.
- Okuyama. L. A., L.C. Federizzi and J.F. Barbosa neto (2004). Correlation and path analysis of yield and its components and plant traits in wheat. *Ciência Rural*, **34(6)**: 1701-1708.
- Page, A.L., R.H. Miller and D.R. Keeny (1982). "methods of Soil Analysis" part II, Chemical and microbiological properties (2nded.), Am. Soc. Agron. Monograph, No. 9. Madison-Wisconsin, USA, PLOS Rev., 18: 215-246.
- Piper, C.S. (1950). Soil and Plant Analysis, The University of

Adelaide Press, Adelaide, Australia, 368.

- Rhodes, M.E. (1958). The cytology of *Pseudomonas* spp. As revealed by a silver-plating staining method. J. Gen. *Microbiol.*, 18: 639-648.
- Ryan, R.M., K.M. Sheldon, T. Kasser and E.L. Deci (1996). All goals are not created equal. In P. M. Gollwitzer & J.A. Bargh, (Eds.). The psychology of action: Linking cognition and motivation to behavior (pp.7-26). New York: Guildford Press.
- Sairam, R.K. (1994). Effect of moisture stress on physiological activities of two contrasting wheat genotypes. *Ind. J. Exp. Biol.*, **32:** 594-597.
- Samira, A., H. Zahedi, O. Sadeghipour and R. Akbar (2013). Effect of plant growth promoting rhizobacteria (PGPR) on physiological parameters and nitrogen content of soybean grown under different irrigation regimes. *Res. on Crops*, 14 (3): 798-803.
- Schaad, N.W. (1992). Laboratory Guide for Identification of Plant Pathogenic Bacteria, 2nd Edn, International Book Distributing Co,Lucknow, 44-58.
- Upadhyay, S., N. Kumar, V. K. Singh and Ans (2015). Isolation, characterization and morphological study of *Azotobacter* isolates. *Journal of Applied and Natural Science*, 7(2): 984–990.
- Vardharajulaa, S., S.Z. Alia, M. Grover, G. Reddyb and V. Bandi (2011). Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes and antioxidant status of maize under drought stress. *Journal of Plant Interactions*, 6(1): 1-14.
- Sandhya, V. Ali, S.K.Z. Minakshi, G. Gopal, Reddy and B. Venkateswarlu (2009). Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing *Pseudomonas putida* strain GAPP45. *Biology* and *Fertility of Soils*, **46:** 17–26. http://dx.doi.org/10.1007/ s00374-009-0401-z
- Seifan, M., A.K. Samani and A. Berenjian (2016). Induced calcium carbonate precipitation using Bacillus species. *Appl. Microbiol. Biotechnol.*, **100**: 9895–9906. [CrossRef] [PubMed].
- Sharp, R.E., T.C. Hsiao and W.K. Silk (1990). Growth of the maize primary root at low water potentials II: role of growth and deposition of hexose and potassium in osmotic adjustment. *Plant Physiol.*, 93: 1337–1346.
- Spaepen, S., J.V anderleyden and R. Remans (2007). Indole-3acetic acid in microbial and microorganism- plant signaling. *FEMS Microbiol Rev.*, 31: 425–448. [CrossRef] [PubMed]
- Stella, M. and M. Suhaimi (2010). Selection of suitable growth medium for free-living diazotrophs isolated from compost. *J. Trop. Agric. and Fd. Sc.*, **38(2):** 211–219.
- Wani, S.P. (1990). Inoculation with associative nitrogen fixing bacteria in cereal grain production improvement. *Indian J. Microbiol.*, **30**: 363-393.
- Yang, J. and J. Zhang (2006). Grain filling of cereals under soil drying. New Phytol., 169: 223–236.
- Yavuz, D., N. Yavuz and S. Suheri (2010). Design and Management of a Drip Irrigation System for an Optimum Potato Yield. J. Agr. Sci. Tech., 18: 817-830.